500 - Server Error - Interner Fehler
Oh je, das tut uns Leid
Leider konnte die gewünschte Seite nicht gefunden werden
Eventuell haben Sie sich in der Eingabe der URL vertippt oder Sie nutzen ein veraltetes Lesezeichen. Sie können nach den gewünschten Artikel suchen oder auf unserer Startseite nach Produkten stöbern.
Fehlermeldungen helfen uns dabei conrad.ch weiter zu verbessern. Vielen Dank!
Bestell-Hotline
Mo. bis Fr. von 08:00 bis 17:30 Uhr
Tel.: 0848 80 12 80
Fax: 0848 80 12 81
Privatkunden: sales@conrad.ch
Geschäftskunden: business@conrad.ch
Service-Hotline
Für alle Fragen zur Bezahlung, Mahnung oder zu Ihrem Kundenkonto gibt es unsere kompetente Service-Hotline. Natürlich sind wir auch für Ihre Anregungen dankbar. Rufen Sie uns also an oder faxen Sie uns.
Mo. bis Fr. von 8.00 bis 17.00 Uhr
Telefon 0848 80 12 80
Fax 0848 80 12 87
Technische Beratungs-Hotline
Für alle technischen Fragen stehen Ihnen unsere Techniker mit Rat und Tat zur Seite. Rufen Sie uns also an oder faxen Sie uns.
Mo.- Do. von 08.00 – 12.00 und 13.00 - 17.00 Uhr
Fr. von 08.00 – 12.00 Uhr
Telefon 0848 80 12 80
Fax 0848 80 12 89
Das könnte Ihnen auch gefallen
Profitieren Sie von unschlagbaren
-
Aktionen
-
Promotionen
-
Technik-SALES
-
und Vorteilen
Reinschauen lohnt sich!
Ratgeber
Z-Diode
Für gewöhnlich lassen Dioden den Stromfluss lediglich in Durchflussrichtung zu und sperren in Gegenrichtung, um zum Beispiel als Gleichrichterdiode den Stromfluss nur in eine Richtung zu gewährleisten. Als spezielle Art der Dioden dient die Z-Diode dagegen hauptsächlich zur Stabilisierung von Spannungen. Sie kann aber auch dafür verwendet werden, Spannungen in einem Stromkreislauf zu begrenzen. Wie genau die Z-Diode funktioniert, welche Vor- und Nachteile sie bietet und in welchen Bereichen sie eingesetzt werden kann, erfahren Sie in diesem Ratgeber. Des Weiteren gibt es beim Kauf einige Dinge, auf die Sie achten sollten, um die richtige Diode für Ihre Bedürfnisse auswählen zu können.
Während die Z-Diode in Sperrrichtung betrieben wird, arbeitet sie in Durchlassrichtung wie eine gewöhnliche Diode. Man spricht bei Z-Dioden von sogenannten Zener- oder Lawinen-Effekten, die dazu führen, dass der Strom schlagartig zunimmt, sobald eine bestimmte Sperrspannung erreicht wird.
Beide Effekte treten bei unterschiedlichen Spannungen auf. So spricht man bei einer Sperrspannung von unter 5 Volt vom Zener-Effekt. Er tritt auf, wenn die elektrische Feldstärke in der Sperrschicht groß genug ist, um die Elektronenpaarbindungen aufzubrechen. Die Elektronen werden dabei aus ihrem Gitterverband gelöst und erhöhen so die elektrische Leitfähigkeit, sowie den Sperrstrom oder auch Zenerstrom genannt.
Ab einer Spannung von über 5 Volt treten Zener-Effekt und Lawinen-Effekt gleichzeitig auf, wobei der Lawinen-Effekt dafür sorgt, dass die eingebaute Sperrschicht mit den freigesetzten Ladungsträgern besetzt wird. Ab einer Sperrspannung von über circa 6,5 Volt tritt nur noch der Lawinen-Effekt auf. Dabei steigt die Spannung auf ein Niveau, bei dem die Ladungsträger so sehr beschleunigt werden, dass weitere Ladungsträger aus anderen Gitteratomen freigesetzt werden.
Die Abfolge wiederholt sich und potenziert die Anzahl an freigesetzten Ladungsträgern, was zur plötzlichen Leitfähigkeit der Sperrschicht führt. Der Name des Lawinen-Effektes stammt dementsprechend aus dem plötzlichen „überrollen“ der Sperrschicht mit freigesetzten Ladungsträgern. Dioden, die ausschließlich durch diesen Effekt oberhalb der Durchbruchsspannung auflösen, werden Avalanche-Dioden genannt. Sobald die Spannung wieder unter den Durchbruchsspannungswert fällt, wird die Sperrschicht sofort wiederhergestellt, sodass nur noch ein sehr geringer Stromfluss in Sperrrichtung möglich ist.
Es gibt verschiedene Diodentypen, die mit unterschiedlichen Sperrspannungen betrieben werden. Diese lassen sich wie folgt charakterisieren:
Diodentyp | UZ in Voltbei IZ = 5 mA |
rZ in Ohmbei IZ = 5 mA | αZ · 10−4/Kbei IZ = 5 mA |
---|---|---|---|
ZPD 2,7 |
2,4 ... 3,1 | 70 | −9 ... −5 |
ZPD 4,7 | 4,1 ... 5,2 | 60 | −6 ... 0 |
ZPD 6,8 | 6,1 ... 7,5 | 4 | −1 ... +4 |
ZPD 8,2 | 7,3 ... 9,2 |
4 | +2 ... +7 |
ZPD 12 | 10,7 ... 13,4 | 15 | +6 ... +9 |
ZPD 15 | 13,0 ... 16,5 | 20 | +7 ... +9 |
Welche Vor -und Nachteile haben Z-Dioden?
Z-Dioden eignen sich hervorragend zur Spannungsstabilisierung, da sie vergleichsweise günstig und simpel in der praktischen Anwendung sind. Sie können also trotz variablen Stromflusses die Spannung konstant halten, um so empfindliche Bauelemente vor Spannungsschwankungen zu schützen. Dennoch ergeben sich je nach Anwendungsbereich verschiedene Nachteile, die es zu berücksichtigen gilt.
Sollten Sie mit Signalen arbeiten, kann es passieren, dass die Z-Diode durch die Nichtlinearität des Bauteils verzerrend auf Signale wirkt. Etwaige Verzerrungen können sowohl in Durchflussrichtung, als auch in Sperrrichtung auftreten.
Unser Praxistipp
Z-Dioden eignen sich nur für Schaltungen mit geringer und relativ konstanter Stromaufnahme. Für größere Stromschwankungen und Stromflüsse sind Spannungsregler besser geeignet.
Wie temperaturabhängig sind Z-Dioden?
Z-Dioden erhitzen sich im normalen Betrieb kaum. Sollte es allerdings zu einer starken Belastung kommen, kann eine sehr hohe Temperaturentwicklung entstehen. Bei einer Belastung über der maximal zulässigen Verlustleistung kommt es unter anderem durch die starke Erhitzung zu einer sehr schnellen Materialermüdung, was zur Zerstörung des Bauteils führen kann. Vor allem bei Anwendungen, die eine genaue Spannung benötigen, ist die Temperaturabhängigkeit von Nachteil. Die Temperaturabhängigkeit einer Z-Diode wird durch den Temperaturkoeffizienten angegeben.
Unser Praxistipp
Wenn Sie Z-Dioden mit positiven und negativen Temperaturkoeffizienten in Reihe schalten, heben sich die Temperaturkoeffizienten optimalerweise auf und reduzieren so die Temperaturabhängigkeit auf ein Minimum.
Hilfreich können sie aber auch bei der Spannungsbegrenzung, sowie beim Überlastungsschutz sein. Dabei können Messgeräte durch Z-Dioden geschützt werden, denn sie begrenzt die Spannung bei Vollausschlag im Messgerät. Dadurch steigt der Strom im Messgerät nicht weiter an und es ist vor Überlastung geschützt. Wenn Sie Z-Dioden als Sicherheitsbarriere im Explosionsschutz einsetzen möchten, so spricht man in der Regel von einer Zenerbarriere. Sie verhindert das Eindringen von unzulässig hoher Energie in einen hoch entzündlichen Bereich.
Darüber hinaus werden Z-Dioden häufig dazu verwendet, Störungen darzustellen, die beispielsweise dazu dienen, Störungen in einem Übertragungskanal zu beschreiben. Diese Störungen werden weißes Rauschen genannt und können durch den Lawinen-Effekt der Z-Dioden gut generiert werden. Je stärker dabei der Stromfluss ist, umso größer ist auch der Rausch-Effekt. Das durch die Bewegungen der Ladungsträger innerhalb der Diode hervorgerufene Rauschen wird auch Schrotrauschen genannt und wird durch den oben beschriebenen Lawinen-Effekt in den Z-Dioden noch verstärkt.
Beim Kauf von Z-Dioden finden Sie bei uns immer ausführliche Produktbeschreibungen und Informationen zu den technischen Daten der Diode. Natürlich kommt es grundsätzlich darauf an, für welchen Zweck Sie Ihre Z-Diode einsetzen möchten. Dennoch sollten Sie immer darauf achten, dass Sie die maximal zulässige Verlustleistung nie überschreiten. Diese wird bei den technischen Daten der Diode als P(TOT) angegeben. Andernfalls kann die Diode sehr schnell zerstört werden.
Darüber hinaus sollten Sie auf die angegebene Sperrspannung und ihre Toleranz achten. Diese ist als Z.Spg. (Uz) in den technischen Daten zu finden und gibt Ihnen Auskunft darüber, mit welcher Spannung die Z-Diode betrieben werden kann. Aus der angegebenen Sperrspannung und ihrer Toleranz ergeben sich die maximal zulässige Sperrspannung, sowie die minimal benötigte Sperrspannung, um die Diode ordnungsgemäß in Betrieb nehmen zu können.
Weiterhin wichtig sind die verschiedenen Gehäusearten, die auf bestimmte Einsatzmöglichkeiten zugeschnitten sind. So können sie je nach Bauweise zur Durchsteckmontage oder zur Oberflächenmontage verwendet werden. Die jeweilige Gehäuseart finden Sie im Titel des Artikels und in der Produktbeschreibung. Die Gehäuse können aus Metall, Glas oder Kunststoff bestehen und unterscheiden sich je nach Hersteller.
Dennoch sollten Sie immer darauf achten, dass Sie die maximal zulässige Verlustleistung nie überschreiten. Diese wird bei den technischen Daten der Diode als P(TOT) angegeben. Andernfalls kann die Diode sehr schnell zerstört werden.
Je nach Anwendung der Z-Diode ergeben sich noch viele weitere Voraussetzungen und Kennzahlen, die es zu beachten gilt. Diese finden Sie ebenfalls in den technischen Daten oder in der Kategorie „Dokumente & Downloads“, in der Ihnen zu jeder Diode ein umfangreiches Produktblatt zur Verfügung steht. Hier können Sie alle Details und Kennzahlen der jeweiligen Diode einsehen.
Unser Praxistipp
Gehäuse mit integriertem Metallkühler ermöglichen eine deutlich bessere Wärmeableitung. Dadurch erhöht sich die maximal zulässige Verlustleistung, also P(TOT) minimal.